
SQL – Congiunzioni (JOIN) 1/2 prof.ssa P.Grandillo

SELECT *

 FROM members

members ∩ committees SELECT *

 FROM committees

SELECT member_id, M.name AS nameM ,

 committee_id , C.name AS nameC

 FROM members M INNER JOIN committees C

 ON M.name = C.name

ORDER BY nameM; -- oppure nameC, è indifferente per INNER JOIN

SELECT member_id, M.name AS nameM ,

 committee_id , C.name AS nameC

 FROM members M LEFT JOIN committees C

 USING (name)

ORDER BY nameM;

SELECT member_id, M.name AS nameM ,

 committee_id , C.name AS nameC

 FROM members M RIGHT JOIN committees C

 USING (name)

ORDER BY nameC;
Basato su esempi del MySQLTutorial https://www.mysqltutorial.org/mysql-join/

SQL – Congiunzioni (JOIN) 2/2 prof.ssa P.Grandillo

name presenti in members ma assenti in committees

SELECT member_id, M.name AS nameM ,

 committee_id , C.name AS nameC

 FROM members M LEFT JOIN committees C

 USING (name)

 WHERE committee_id IS NULL

ORDER BY nameM;

name presenti in committees ma assenti in members

SELECT member_id, M.name AS nameM ,

 committee_id , C.name AS nameC

 FROM members M RIGHT JOIN committees C

 USING (name)

 WHERE member_id IS NULL

ORDER BY nameC;

Creazione database

CREATE DATABASE tut;

USE tut;

CREATE TABLE members (
 member_id INT,
 name VARCHAR(100),
 PRIMARY KEY (member_id)
);

CREATE TABLE committees (
 committee_id INT,
 name VARCHAR(100),
 PRIMARY KEY (committee_id)
);

INSERT INTO members
VALUES (1, 'John') , (2, 'Jane') , (3, 'Mary') , (4, 'David') , (5, 'Amelia');

INSERT INTO committees
VALUES (1, 'John') , (2, 'Mary') , (3, 'Amelia') , (4, 'Joe');

